login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A353783(n) / A080398(n).
2

%I #7 May 08 2022 19:50:45

%S 1,1,2,1,1,2,4,1,1,1,2,2,1,4,2,1,3,1,2,1,4,2,4,2,1,1,4,4,1,2,16,3,2,3,

%T 4,1,1,2,2,1,1,4,2,2,1,4,8,2,1,1,6,1,9,4,2,4,2,1,2,2,1,16,4,1,1,2,2,3,

%U 4,4,12,1,1,1,2,2,4,2,8,1,11,1,2,4,3,2,2,2,3,1,4,4,16,8,2,6,7,1,2,1,1,6,4,1,4

%N a(n) = A353783(n) / A080398(n).

%H Michael De Vlieger, <a href="/A353785/b353785.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A353783(n) / A080398(n).

%t Array[Apply[LCM, DivisorSigma[1, Power @@@ FactorInteger[#]]]/Apply[Times, FactorInteger[DivisorSigma[1, #]][[All, 1]]] &, 105] (* _Michael De Vlieger_, May 08 2022 *)

%o (PARI)

%o A080398(n) = factorback(factor(sigma(n))[, 1]);

%o A353783(n) = { my(f=factor(n)~); lcm(vector(#f, i, sigma(f[1, i]^f[2, i]))); };

%o A353785(n) = (A353783(n) / A080398(n));

%Y Cf. A000203, A080398, A353783.

%K nonn

%O 1,3

%A _Antti Karttunen_, May 08 2022