login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A353752(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)).
5

%I #9 May 08 2022 15:39:49

%S 1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,2,

%T 1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,6,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,

%U 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,1,1,1,1,1,1

%N a(n) = A353752(n) / gcd(A062401(n), A353752(n)), where A062401(n) = phi(sigma(n)), and A353752(n) = Product_{p^e||n} phi(sigma(p^e)).

%C Denominator of fraction A062401(n) / A353752(n).

%H Antti Karttunen, <a href="/A353756/b353756.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A353752(n) / A353754(n) = A353752(n) / gcd(A062401(n), A353752(n)).

%o (PARI)

%o A062401(n) = eulerphi(sigma(n));

%o A353756(n) = { my(f = factor(n), u=prod(k=1, #f~, A062401(f[k, 1]^f[k, 2]))); (u / gcd(A062401(n), u)); };

%Y Cf. A000010, A000203, A062401, A353752, A353753, A353754, A353755 (numerators).

%Y Cf. also A353806.

%K nonn,frac

%O 1,10

%A _Antti Karttunen_, May 08 2022