Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Jan 26 2023 12:17:17
%S 1,4,2,30,4,8,4,48,132,24,8,60,30,16,16,870,24,528,24,120,16,48,16,96,
%T 870,120,48,120,48,96,16,720,32,144,32,3960,306,96,120,288,120,64,140,
%U 240,528,96,32,1740,1224,3480,96,1050,144,192,96,192,96,288,96,480,870,64,528,14238,240,192,416,720,64,192,96
%N a(n) = phi(sigma(n)) * A064989(sigma(n)), where A064989 shifts the prime factorization one step towards lower primes.
%C In contrast to A353749, this is not multiplicative, except on positions given by A336547.
%C It seems that a(n) = A353749(n) only on n=1. This would then imply that the intersection of A006872 and A336702 = {1}.
%H Antti Karttunen, <a href="/A353750/b353750.txt">Table of n, a(n) for n = 1..16384</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F a(n) = A353749(A000203(n)) = A062401(n) * A350073(n).
%F a(n) = A353749(n) + A353757(n).
%o (PARI)
%o A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };
%o A353750(n) = { my(s=sigma(n)); (eulerphi(s)*A064989(s)); };
%Y Cf. A000010, A000203, A006872, A062401, A064989, A336547, A336548, A336549, A336702, A350073, A353747, A353748, A353749.
%Y Cf. A353757, A353758 (where a(n) < A353749(n)), A353759 (where a(n) >= A353749(n)), A353760, A353790 [= a(A003961(n))].
%Y Cf. also A353792.
%K nonn
%O 1,2
%A _Antti Karttunen_, May 07 2022
%E Dubious comment deleted by _Antti Karttunen_, Jan 26 2023