login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = phi(n) * A064989(n), where phi is Euler totient function, and A064989 shifts the prime factorization one step towards lower primes.
15

%I #19 Dec 31 2022 03:52:48

%S 1,1,4,2,12,4,30,4,24,12,70,8,132,30,48,8,208,24,306,24,120,70,418,16,

%T 180,132,144,60,644,48,870,16,280,208,360,48,1116,306,528,48,1480,120,

%U 1722,140,288,418,1978,32,1050,180,832,264,2444,144,840,120,1224,644,3074,96,3540,870,720,32,1584,280,4026,416

%N a(n) = phi(n) * A064989(n), where phi is Euler totient function, and A064989 shifts the prime factorization one step towards lower primes.

%H Antti Karttunen, <a href="/A353749/b353749.txt">Table of n, a(n) for n = 1..16384</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>.

%F Multiplicative with a(p^e) = (p - 1) * p^(e-1) * q^e, where q is the largest prime less than p, and 1 if p = 2.

%F a(n) = A000010(n) * A064989(n).

%F For n >= 0, a(4n+2) = a(2n+1).

%F Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/Pi^2) * Product_{p prime} ((p^3-q)/((p+1)*(p^2-q))) = 0.1118576617..., where q(p) = nextprime(p) = A151800(p). - _Amiram Eldar_, Dec 31 2022

%t f[p_, e_] := (p - 1)*p^(e - 1)*If[p == 2, 1, NextPrime[p, -1]^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 70] (* _Amiram Eldar_, May 07 2022 *)

%o (PARI)

%o A064989(n) = { my(f=factor(n>>valuation(n,2))); for(i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f); };

%o A353749(n) = (eulerphi(n)*A064989(n));

%Y Cf. A000010, A064989, A151800, A353747, A353748, A353750.

%K nonn,mult

%O 1,3

%A _Antti Karttunen_, May 07 2022