login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of squared radius of smallest circle passing through exactly n integral points.
2

%I #36 Jan 11 2023 11:08:51

%S 1,25,1,625,25,138125,5,4225,625,801125,25,1221025,15625,105625,65,

%T 185870425,4225,185870425,625,29641625,29641625,30525625,325,17850625,

%U 35409725,1221025,15625,3159797225,105625,763140625,1105,1346691125

%N Numerator of squared radius of smallest circle passing through exactly n integral points.

%C Schinzel proved such a circle always exists, and the square of the radius of a circle passing through 3 integral points is always rational so the sequence is well-defined.

%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a353/A353700.java">Java program</a> (github)

%H S. S. Lacerda, <a href="https://gist.github.com/SofiaSL/eca994e57e519ec16228fa754dd84fd1">schinzel.py</a>

%H E. Pegg, <a href="https://demonstrations.wolfram.com/LatticeCircles/">Lattice Circles</a>

%H Jim Randell, <a href="https://github.com/enigmatic-code/lattice_circles">A collection of minimal radius lattice circles</a> (github)

%H C. Schinzel, <a href="http://doi.org/10.5169/seals-34627">Sur l'existence d'un cercle passant par un nombre donné de points aux coordonnées entières</a>, Enseignement Math, vol. 4, pp. 71-72, 1958.

%e For n=3 a minimal circle is (x - 1/6)^2 + (y - 1/6)^2 = 25/18.

%Y Denominators are A353701.

%K nonn,hard,frac,nice

%O 2,2

%A _Sofia Lacerda_, May 04 2022

%E Data corrected by _Sean A. Irvine_, Jul 17 2022

%E a(29)-a(33) from _Jim Randell_, Jan 10 2023