login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = phi(n) / gcd(phi(n), phi(sigma(n))).
4

%I #13 May 07 2022 09:42:47

%S 1,1,1,1,2,1,3,1,1,2,5,1,2,3,1,4,8,1,9,2,3,5,11,1,2,1,9,1,7,1,15,4,5,

%T 8,3,1,2,9,1,2,10,3,21,5,1,11,23,4,7,1,4,4,26,9,5,3,9,7,29,1,2,15,3,

%U 16,2,5,33,8,11,1,35,1,2,1,2,3,15,1,39,8,27,10,41,1,16,21,7,5,11,1,3,11,15,23,9,4,16,7

%N a(n) = phi(n) / gcd(phi(n), phi(sigma(n))).

%C Denominator of ratio A062401(n) / A000010(n), phi(sigma(n)) / phi(n).

%H Antti Karttunen, <a href="/A353644/b353644.txt">Table of n, a(n) for n = 1..16384</a>

%H Antti Karttunen, <a href="/A353644/a353644.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A000010(n) / A353643(n) = A000010(n) / gcd(A000010(n), A062401(n)).

%t a[n_] := (phi = EulerPhi[n])/GCD[phi, EulerPhi[DivisorSigma[1, n]]]; Array[a, 100] (* _Amiram Eldar_, May 06 2022 *)

%o (PARI) A353644(n) = { my(ph=eulerphi(n)); (ph / gcd(eulerphi(sigma(n)), ph)); };

%Y Cf. A000010, A000203, A062401, A353637, A353643, A353646 (numerators).

%K nonn,frac

%O 1,5

%A _Antti Karttunen_, May 06 2022