Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Apr 28 2022 20:13:07
%S 0,1,1,2,1,4,1,3,2,4,1,7,1,4,4,4,1,7,1,7,4,4,1,11,2,4,3,7,1,12,1,5,4,
%T 4,4,12,1,4,4,11,1,12,1,7,7,4,1,15,2,7,4,7,1,11,4,11,4,4,1,20,1,4,7,6,
%U 4,12,1,7,4,12,1,19,1,4,7,7,4,12,1,15,4,4,1,20,4,4,4,11,1,20,4,7,4,4,4,21,1,7,7
%N Primepi-based variant of the arithmetic derivative applied to the prime shadow of n.
%H Antti Karttunen, <a href="/A353379/b353379.txt">Table of n, a(n) for n = 1..16384</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F a(n) = A258851(A181819(n)).
%p a:= n-> (m-> m*add(i[2]*numtheory[pi](i[1])/i[1], i=ifactors(m)[2]))
%p (mul(ithprime(i[2]), i=ifactors(n)[2])):
%p seq(a(n), n=1..120); # _Alois P. Heinz_, Apr 28 2022
%o (PARI)
%o A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
%o A258851(n) = (n*sum(i=1, #n=factor(n)~, n[2, i]*primepi(n[1, i])/n[1, i])); \\ From A258851
%o A353379(n) = A258851(A181819(n));
%Y Cf. A181819, A258851.
%Y Cf. also A351942.
%K nonn
%O 1,4
%A _Antti Karttunen_, Apr 28 2022