Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Apr 18 2022 17:48:53
%S 0,1,1,1,1,3,1,2,1,2,1,4,1,3,3,2,1,4,1,3,2,2,1,6,1,3,2,4,1,5,1,3,3,2,
%T 3,5,1,3,2,4,1,6,1,3,4,2,1,7,1,3,3,4,1,6,2,6,2,3,1,8,1,2,3,3,3,5,1,3,
%U 3,6,1,8,1,3,4,4,3,6,1,5,2,2,1,8,2,3,2,4,1,7,2,3,3,2,3,9,1,4,4,4,1,5,1,6,5
%N Number of divisors d of n for which A156552(d) is not a multiple of 3.
%H Antti Karttunen, <a href="/A353361/b353361.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%F a(n) = Sum_{d|n} (1-A353269(d)).
%F a(n) = A000005(n) - A353362(n).
%F a(p) = 1 for all primes p.
%F a(n) = a(A003961(n)) = a(A348717(n)), for all n >= 1.
%o (PARI)
%o A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
%o A353269(n) = (!(A156552(n)%3));
%o A353361(n) = sumdiv(n,d,!A353269(d));
%Y Cf. A000005, A003961, A156552, A348717, A353269, A353350, A353362.
%Y Cf. also A353351.
%K nonn
%O 1,6
%A _Antti Karttunen_, Apr 15 2022