login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Smallest k such that k-th derivative of f_n(x) at x=1 is nonpositive, where f_{-1}(x)=0 and f_n(x)=x^(f_{n-1}(x)).
0

%I #16 May 07 2022 20:08:24

%S 0,1,2,7,33,329

%N Smallest k such that k-th derivative of f_n(x) at x=1 is nonpositive, where f_{-1}(x)=0 and f_n(x)=x^(f_{n-1}(x)).

%C f_{-1}(x)=0,

%C f_0(x)=1,

%C f_1(x)=x,

%C f_n(x)=x^(x^(x^...)) is a power tower with n levels.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PowerTower.html">Power Tower</a>.

%t Table[Length[NestWhileList[Expand[D[#, x]] &, Nest[x^# &, 0, n + 1], (# /. x -> 1) > 0 &]] - 1, {n, -1, 3}]

%Y Cf. A005727, A179230, A179405, A179505, A277537.

%K nonn,hard,more

%O -1,3

%A _Vladimir Reshetnikov_, May 06 2022