login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k and k^3 use only even digits.
0

%I #15 May 06 2022 19:59:58

%S 0,2,4,20,40,200,202,400,2000,2002,2020,4000,20000,20002,20020,20200,

%T 40000,200000,200002,200020,200200,202000,400000,2000000,2000002,

%U 2000020,2000200,2002000,2020000,4000000,20000000,20000002,20000020,20000200,20000202,20002000,20002002,20020000,20200000

%N Numbers k such that k and k^3 use only even digits.

%C Numbers k such that k^3 has only even digits are in A052004.

%t seq[ndigmax_] := Module[{nums = Tuples[{0, 2, 4, 6, 8}, ndigmax]}, Select[FromDigits /@ nums, AllTrue[IntegerDigits[#^3], EvenQ] &]]; seq[8] (* _Amiram Eldar_, May 06 2022 *)

%o (Python)

%o from itertools import count, islice, product

%o def agen(): # generator of terms

%o for digits in count(1):

%o for p in product("02468", repeat=digits):

%o if len(p) > 1 and p[0] == "0": continue

%o k = int("".join(p))

%o if set(str(k**3)) <= set("02468"):

%o yield k

%o print(list(islice(agen(), 40))) # _Michael S. Branicky_, May 06 2022

%Y Cf. A085597 (similar, but with odd digits).

%Y Intersection of A014263 and A052004.

%K nonn,base

%O 1,2

%A _Bernard Schott_, May 06 2022