login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353291
Integers whose cube is the sum of the cubes of four primes, not necessarily distinct.
1
12, 66, 336, 504, 588, 602, 756, 1092, 1248, 1470, 1638, 1848, 2142, 2184, 2289, 2394, 2772, 3094, 3192, 3276, 3885, 3948, 4242, 4284, 4368, 4410, 4578, 4620, 4788, 4830, 4998, 5166, 5460, 5544, 5586, 5670, 5754, 6006, 6216, 6552, 6636, 6708, 6804, 6930, 7014
OFFSET
1,1
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..53
Zhichun Zhai, Problems related to Waring-Goldbach problem involving cubes of primes, arXiv:2201.07346 [math.GM], 2022. See Table 3 p. 4.
EXAMPLE
12 is a term because 3^3 + 3^3 + 7^3 + 11^3 = 1728 = 12^3.
PROG
(PARI) list(lim)=my(v=List(), P=apply(p->p^3, primes(sqrtnint(lim\=1, 3)))); foreach(P, p, foreach(P, q, foreach(P, r, my(s=p+q+r, t); for(i=1, #P, t=s+P[i]; if(t>lim, break); if (ispower(t, 3, &rr), listput(v, rr)))))); v = Set(v);
CROSSREFS
Cube roots of the intersection of A346917 and A000578.
Sequence in context: A161805 A036399 A003200 * A200190 A270251 A165107
KEYWORD
nonn
AUTHOR
Michel Marcus, Apr 09 2022
EXTENSIONS
a(8) and beyond from Michael S. Branicky, Apr 09 2022
STATUS
approved