%I #54 May 23 2022 21:44:32
%S 1,3,5,7,9,12,13,15,20,19,21,28,25,27,37,31,33,44,37,42,52,43,45,60,
%T 54,51,68,56,57,83,61,63,84,67,81,92,73,75,100,90,81,113,85,87,130,91,
%U 93,124,104,114,132,103,105,143,126,120,148,115,117,175,121,123,180,127,150,173,133,135,180,175
%N Sum of the odd-indexed terms in the n-th row of the triangle A196020.
%C a(n) is the total number of steps in all odd-indexed double-staircases of the diagram of A196020 with n levels (see the example).
%C a(n) is also the total number of steps in all odd-indexed double-staircases of the diagram described in A335616 with n levels that have at least one step in the bottom level of the diagram.
%C Sigma(n) <= a(n).
%C The graph of the sum-of-divisors function A000203 is intermediate between the graph of this sequence and the graph of A353154 (see link). - _Omar E. Pol_, May 13 2022
%H David A. Corneth, <a href="/A353149/b353149.txt">Table of n, a(n) for n = 1..10000</a>
%H OEIS Plot 2, <a href="https://oeis.org/plot2a?name1=A353149&name2=A000203&tform1=untransformed&tform2=untransformed&shift=0&radiop1=matp&drawlines=true">A353149 vs A000203</a>
%F a(n) = A000203(n) + A353154(n).
%F a(n) = A209246(n) - A353154(n).
%e For n = 15 the 15th row of the triangle A196020 is [29, 13, 7, 0, 1]. The sum of the odd-indexed terms is 29 + 7 + 1 = 37, so a(15) = 37.
%e Illustration of a(15) = 37:
%e Level Diagram
%e . _
%e 1 _|1|_
%e 2 _|1 1|_
%e 3 _|1 1|_
%e 4 _|1 1|_
%e 5 _|1 _ 1|_
%e 6 _|1 |1| 1|_
%e 7 _|1 | | 1|_
%e 8 _|1 _| |_ 1|_
%e 9 _|1 |1 1| 1|_
%e 10 _|1 | | 1|_
%e 11 _|1 _| |_ 1|_
%e 12 _|1 |1 1| 1|_
%e 13 _|1 | | 1|_
%e 14 _|1 _| _ |_ 1|_
%e 15 |1 |1 |1| 1| 1|
%e .
%e The diagram has 37 steps, so a(15) = 37.
%o (PARI) a(n) = { my(r = A196020row(n)); sum(i = 0, (#r-1)\2, r[2*i + 1]) }
%o A196020row(n) = { my(res, qc); qc = (sqrtint(8*n + 1) - 1)\2; res = vector(qc); for(i = 1, qc, cn = n - binomial(i + 1, 2); if(cn % i == 0, res[i] = 2*(cn/i) + 1 ) ); res } \\ _David A. Corneth_, Apr 28 2022
%Y Cf. A000203, A057640, A196020, A209246, A211343, A235791, A236104, A237591, A237593, A285901, A335616, A347186, A353154.
%K nonn
%O 1,2
%A _Omar E. Pol_, Apr 26 2022