Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 May 28 2023 22:21:21
%S 4,23,117,586,2930,14649,73243,366212,1831056,9155275,45776369,
%T 228881838,1144409182,5722045901,28610229495,143051147464,
%U 715255737308,3576278686527,17881393432621,89406967163090,447034835815434,2235174179077153,11175870895385747
%N a(1) = 4; for n > 1, a(n) = 5*a(n-1) + 5 - n.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-11,5).
%F G.f.: x * (4 - 5*x)/((1 - x)^2 * (1 - 5*x)).
%F a(n) = 7*a(n-1) - 11*a(n-2) + 5*a(n-3).
%F a(n) = 3*A014827(n) + n.
%F a(n) = (3*5^(n+1) + 4*n - 15)/16.
%F a(n) = Sum_{k=0..n-1} (5 - n + k) * 5^k.
%F E.g.f.: exp(x)*(15*exp(4*x) + 4*x - 15)/16. - _Stefano Spezia_, May 28 2023
%t LinearRecurrence[{7, -11, 5}, {4, 23, 117}, 23] (* _Amiram Eldar_, Apr 23 2022 *)
%t nxt[{n_, a_}] := {n + 1, 5 a + 4 - n}; NestList[nxt,{1,4},30][[;;,2]] (* _Harvey P. Dale_, Apr 28 2023 *)
%o (PARI) my(N=30, x='x+O('x^N)); Vec(x*(4-5*x)/((1-x)^2*(1-5*x)))
%o (PARI) a(n) = (3*5^(n+1)+4*n-15)/16;
%o (PARI) b(n, k) = sum(j=0, n-1, (k-n+j)*k^j);
%o a(n) = b(n, 5);
%Y Cf. A064617, A353094, A353095, A353097, A353098, A353099, A353100.
%Y Cf. A014827.
%K nonn,easy
%O 1,1
%A _Seiichi Manyama_, Apr 23 2022