login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: 0 = Sum_{n>=1} (Lucas(n) - A(x))^n * x^n/n, where Lucas(n) = A000204(n).
1

%I #46 Apr 28 2022 20:24:02

%S 1,2,5,298,18949,3962150,1916564344,2501114025582,8336852053702202,

%T 73027618049882652700,1666798946804859125492899,

%U 99738726494828465657124210156,15634873312495144092899303952245929,6430416165010536428917103922818349814504

%N G.f. A(x) satisfies: 0 = Sum_{n>=1} (Lucas(n) - A(x))^n * x^n/n, where Lucas(n) = A000204(n).

%C It is conjectured that this is an integer sequence.

%C This sequence is a special case of a more general conjecture: 0 = Sum_{n>=1} (L(n) - F(x))^n * x^n/n is satisfied by an integer series F(x) if exp( Sum_{n>=1} L(n) * x^n/n ) yields an integer series.

%H Paul D. Hanna, <a href="/A353050/b353050.txt">Table of n, a(n) for n = 0..100</a>

%e G.f.: A(x) = 1 + 2*x + 5*x^2 + 298*x^3 + 18949*x^4 + 3962150*x^5 + 1916564344*x^6 + 2501114025582*x^7 + 8336852053702202*x^8 + ...

%e where

%e 0 = (1 - A(x))*x + (3 - A(x))^2*x^2/2 + (4 - A(x))^3*x^3/3 + (7 - A(x))^4*x^4/4 + (11 - A(x))^5*x^5/5 + (18 - A(x))^6*x^6/6 + (29 - A(x))^7*x^7/7 + (47 - A(x))^8*x^8/8 + (76 - A(x))^9*x^9/9 + ... + (Lucas(n) - A(x))^n*x^n/n + ...

%e Related series.

%e exp( Sum_{n>=1} A(x)^n * x^n/n ) = 1/(1 - x*A(x)) = 1 + x + 3*x^2 + 10*x^3 + 319*x^4 + 19601*x^5 + 4002282*x^6 + 1924629400*x^7 + 2504975492897*x^8 + 8341867813691252*x^9 + ...

%e exp( Sum_{n>=1} Lucas(n)^n * x^n/n ) = 1 + x + 5*x^2 + 26*x^3 + 634*x^4 + 32928*x^5 + 5704263*x^6 + 2470113915*x^7 + 2978904483553*x^8 + 9401949327631932*x^9 + ... + A156216(n)*x^n + ...

%o (PARI) {Lucas(n) = fibonacci(n-1) + fibonacci(n+1)}

%o {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);

%o A[#A] = polcoeff( sum(m=1,#A, (Lucas(m) - Ser(A))^m*x^m/m), #A));A[n+1]}

%o for(n=0,20,print1(a(n),", "))

%Y Cf. A156216, A316363, A000204.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Apr 26 2022