login
A353037
Positions of records in A119435.
2
1, 2, 3, 5, 7, 9, 11, 15, 17, 19, 23, 27, 31, 33, 35, 39, 47, 55, 63, 65, 67, 71, 79, 87, 95, 111, 119, 127, 129, 131, 135, 143, 159, 175, 191, 207, 223, 239, 255, 257, 259, 263, 271, 287, 303, 319, 351, 367, 383, 415, 431, 447, 479, 495, 511, 513, 515, 519, 527
OFFSET
1,2
COMMENTS
Let S = A119435. S(2^k +- 1) with k > 0 are records in S and thus (2^k - 1) and (2^k + 1) appear in this sequence.
S(2^k - 1) = 2^(k+1) - 3 and S(2^k + 1) = 2^(k+1) + 1, while S(2^k) is a local minimum.
LINKS
Michael De Vlieger, Bitmap of a(n), n = 1..967, vertical exaggeration 12X.
Michael De Vlieger, Binary expansion of a(n), n = 1..967.
MATHEMATICA
a = {1}; nn = 527; r = 0; Do[AppendTo[a, Complement[Range[i + 2 nn], a][[IntegerReverse[i, 2]] ]], {i, 2, nn}]; Reap[Do[If[# > r, r = #; Sow[i]] &@ a[[i]], {i, Length[a]}]][[-1, -1]] ]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michael De Vlieger, Apr 18 2022
STATUS
approved