OFFSET
1,2
COMMENTS
Let S = A119435. S(2^k +- 1) with k > 0 are records in S and thus (2^k - 1) and (2^k + 1) appear in this sequence.
S(2^k - 1) = 2^(k+1) - 3 and S(2^k + 1) = 2^(k+1) + 1, while S(2^k) is a local minimum.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..1360
Michael De Vlieger, Bitmap of a(n), n = 1..967, vertical exaggeration 12X.
Michael De Vlieger, Binary expansion of a(n), n = 1..967.
MATHEMATICA
a = {1}; nn = 527; r = 0; Do[AppendTo[a, Complement[Range[i + 2 nn], a][[IntegerReverse[i, 2]] ]], {i, 2, nn}]; Reap[Do[If[# > r, r = #; Sow[i]] &@ a[[i]], {i, Length[a]}]][[-1, -1]] ]
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michael De Vlieger, Apr 18 2022
STATUS
approved