login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the n-th positive integer that has no common 1-bit with n; a(0) = 0.
1

%I #14 Apr 21 2022 12:21:37

%S 0,2,4,12,8,18,24,56,16,34,36,84,48,98,112,240,32,66,68,140,72,162,

%T 168,360,96,194,196,420,224,450,480,992,64,130,132,268,136,274,280,

%U 600,144,322,324,660,336,706,720,1488,192,386,388,780,392,834,840,1736

%N a(n) is the n-th positive integer that has no common 1-bit with n; a(0) = 0.

%C This sequence corresponds to the main diagonal of A295653.

%C To compute a(n):

%C - consider the binary expansion of n: Sum_{k >= 0} b_k * 2^k,

%C - and the positions of zeros in this binary expansion: {z_k, k >= 0},

%C - then a(n) = Sum_{k >= 0} b_k * 2^z(k).

%H Rémy Sigrist, <a href="/A352993/b352993.txt">Table of n, a(n) for n = 0..8192</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(n) = A295653(n, n).

%F a(2^k) = 2^(k+1) for any k >= 0.

%F a(2^k-1) = A020522(k) for any k >= 0.

%F A000120(a(n)) = A000120(n).

%F A070939(a(n)) = A070939(n) + A000120(n).

%e For n = 43:

%e - the binary expansion of 43 is "... 0 0 0 0 1 0 1 0 1 1"

%e - so the binary expansion of a(43) is "... 1 0 1 0(0)1(0)1(0 0)",

%e - and a(43) = 660.

%o (PARI) a(n) = { my (m=n, v=0); for (e=0, oo, if (n==0, return (v), !bittest(m, e), if (n%2, v+=2^e;); n\=2)) }

%o (Python)

%o def a(n):

%o b = bin(n)[2:][::-1]

%o z = [k for k, bk in enumerate(b+'0'*(len(b)-b.count('0'))) if bk=='0']

%o return sum(int(bk)*2**zk for bk, zk in zip(b, z))

%o print([a(n) for n in range(56)]) # _Michael S. Branicky_, Apr 21 2022

%Y Cf. A000120, A020522, A070939, A295653.

%K nonn,base

%O 0,2

%A _Rémy Sigrist_, Apr 14 2022