|
|
A352975
|
|
a(n) is the smallest number which can be represented as the sum of n distinct centered n-gonal numbers in exactly n ways, or -1 if no such number exists.
|
|
0
|
|
|
96, 192, 330, 504, 840, 1304, 1872, 2910, 3971, 5340, 6851, 8932, 11700, 14496, 18258, 22410, 27265, 32620, 39606, 47124, 55545, 65448, 76050, 87854, 101925, 116956, 134125, 152340, 173538, 195424, 220473, 246942, 276570, 306756, 340918, 377644, 418821, 462720
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,1
|
|
COMMENTS
|
If a(n) exists, then n divides a(n). - Thomas Scheuerle, Apr 13 2022
|
|
LINKS
|
Table of n, a(n) for n=3..40.
Eric Weisstein's World of Mathematics, Centered Polygonal Number
|
|
FORMULA
|
a(n) >= n*binomial(n + 2, 3) + n, if a(n) does exist. - Thomas Scheuerle, Apr 13 2022
|
|
EXAMPLE
|
For n = 3: 96 = 1 + 10 + 85 = 1 + 31 + 64 = 19 + 31 + 46.
|
|
CROSSREFS
|
Cf. A101321, A350209, A350397, A350405.
Sequence in context: A090762 A206337 A161482 * A044428 A044809 A115437
Adjacent sequences: A352972 A352973 A352974 * A352976 A352977 A352978
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Ilya Gutkovskiy, Apr 13 2022
|
|
EXTENSIONS
|
a(10)-a(16) from Thomas Scheuerle, Apr 13 2022
a(17)-a(40) from Michael S. Branicky, May 19 2022
|
|
STATUS
|
approved
|
|
|
|