OFFSET
0,3
LINKS
Bartosz Sobolewski and Maciej Ulas, Solutions of certain meta-Fibonacci recurrences, arXiv:2204.04011 [math.NT], 2022.
FORMULA
a(2*k+1) = k+1; a(2*k+2) = a(2*k) + a(k+1). See arXiv link.
MATHEMATICA
a[n_?(# < 2 &)] = 1; a[n_] := a[n] = a[n - a[n - 1]] + a[n - 2]; Array[a, 100, 0] (* Amiram Eldar, Apr 11 2022 *)
PROG
(PARI) lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, my(x=n - va[n-1]); va[n] = if (x<=0, 1, va[x]) + if (n<=2, 1, va[n-2]); ); concat(1, va); }
(Python)
from functools import cache
@cache
def a(n): return 1 if n <= 1 else a(n-a(n-1)) + a(n-2)
print([a(n) for n in range(67)]) # Michael S. Branicky, Apr 11 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Apr 11 2022
STATUS
approved