login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. 1/(1 - Sum_{k>=1} phi(k)*x^k/k!), where phi is the Euler totient function A000010.
1

%I #9 Apr 07 2022 10:43:14

%S 1,1,3,14,84,634,5740,60626,731852,9938670,149966116,2489148386,

%T 45070961740,884107377360,18676602726734,422721143355808,

%U 10205605681874952,261789688633794528,7110331886095458918,203848868169846041430,6151813078359073154568

%N Expansion of e.g.f. 1/(1 - Sum_{k>=1} phi(k)*x^k/k!), where phi is the Euler totient function A000010.

%F a(0) = 1; a(n) = Sum_{k=1..n} phi(k) * binomial(n,k) * a(n-k).

%o (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1-sum(k=1, N, eulerphi(k)*x^k/k!))))

%o (PARI) a(n) = if(n==0, 1, sum(k=1, n, eulerphi(k)*binomial(n, k)*a(n-k)));

%Y Cf. A000010, A159929, A300011, A318811.

%K nonn

%O 0,3

%A _Seiichi Manyama_, Apr 07 2022