login
A352880
Triangle read by rows: T(n,k) = number of vertices of degree k in an origami flip graph OFG(A2n).
1
8, 12, 18, 16, 64, 32, 20, 150, 200, 50, 24, 288, 720, 480, 72, 28, 490, 1960, 2450, 980, 98, 32, 768, 4480, 8960, 6720, 1792, 128, 36, 1134, 9072, 26460, 31752, 15876, 3024, 162, 40, 1600, 16800, 67200, 117600, 94080, 33600, 4800, 200, 44, 2178, 29040, 152460, 365904, 426888, 243936, 65340, 7260, 242
OFFSET
2,1
COMMENTS
See page 2 of Hull, et al. (2022) for a description of OFG(A_2n).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..11176 (rows 2..150, flattened)
Thomas C. Hull, Manuel Morales, Sarah Nash, and Natalya Ter-Saakov, Maximal origami flip graphs of flat-foldable vertices: properties and algorithms, arXiv:2203.14173 [math.CO], 2022, p. 13.
FORMULA
T(n,k) = (4n/(n+1)) * binomial(n+1, k-n-1) * binomial(n-2, k-n-2) for n+2 <= k <= 2n.
EXAMPLE
Table begins:
2n\k | 4 5 6 7 8 9 10 11 12
---------------------------------------------
4 | 8
6 | 12 18
8 | 16 64 32
10 | 20 150 200 50
12 | 24 288 720 480 72
...
MATHEMATICA
Table[(4 n/(n + 1)) Binomial[n + 1, k - n - 1] Binomial[n - 2, k - n - 2], {n, 2, 11}, {k, n + 2, 2 n}] // Flatten
CROSSREFS
Sequence in context: A030752 A091523 A257162 * A104201 A036327 A340681
KEYWORD
nonn,tabl,easy
AUTHOR
Michael De Vlieger, Apr 06 2022
STATUS
approved