login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352880
Triangle read by rows: T(n,k) = number of vertices of degree k in an origami flip graph OFG(A2n).
1
8, 12, 18, 16, 64, 32, 20, 150, 200, 50, 24, 288, 720, 480, 72, 28, 490, 1960, 2450, 980, 98, 32, 768, 4480, 8960, 6720, 1792, 128, 36, 1134, 9072, 26460, 31752, 15876, 3024, 162, 40, 1600, 16800, 67200, 117600, 94080, 33600, 4800, 200, 44, 2178, 29040, 152460, 365904, 426888, 243936, 65340, 7260, 242
OFFSET
2,1
COMMENTS
See page 2 of Hull, et al. (2022) for a description of OFG(A_2n).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 2..11176 (rows 2..150, flattened)
Thomas C. Hull, Manuel Morales, Sarah Nash, and Natalya Ter-Saakov, Maximal origami flip graphs of flat-foldable vertices: properties and algorithms, arXiv:2203.14173 [math.CO], 2022, p. 13.
FORMULA
T(n,k) = (4n/(n+1)) * binomial(n+1, k-n-1) * binomial(n-2, k-n-2) for n+2 <= k <= 2n.
EXAMPLE
Table begins:
2n\k | 4 5 6 7 8 9 10 11 12
---------------------------------------------
4 | 8
6 | 12 18
8 | 16 64 32
10 | 20 150 200 50
12 | 24 288 720 480 72
...
MATHEMATICA
Table[(4 n/(n + 1)) Binomial[n + 1, k - n - 1] Binomial[n - 2, k - n - 2], {n, 2, 11}, {k, n + 2, 2 n}] // Flatten
CROSSREFS
Sequence in context: A030752 A091523 A257162 * A104201 A036327 A340681
KEYWORD
nonn,tabl,easy
AUTHOR
Michael De Vlieger, Apr 06 2022
STATUS
approved