login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352843
Expansion of e.g.f. exp(Sum_{k>=1} sigma_k(k) * x^k/k!).
1
1, 1, 6, 44, 491, 6597, 110652, 2144606, 47988524, 1206275925, 33777572464, 1040200674416, 34967153135940, 1273241146218823, 49928549099500206, 2097300313258417056, 93953420539864844743, 4470694981375022862697, 225184078001798318202935
OFFSET
0,3
COMMENTS
Exponential transform of A023887.
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} sigma_k(k) * binomial(n-1,k-1) * a(n-k).
MATHEMATICA
nmax = 20; CoefficientList[Series[E^(Sum[DivisorSigma[k, k]*x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, k)*x^k/k!))))
(PARI) a(n) = if(n==0, 1, sum(k=1, n, sigma(k, k)*binomial(n-1, k-1)*a(n-k)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 05 2022
STATUS
approved