login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A352843
Expansion of e.g.f. exp(Sum_{k>=1} sigma_k(k) * x^k/k!).
1
1, 1, 6, 44, 491, 6597, 110652, 2144606, 47988524, 1206275925, 33777572464, 1040200674416, 34967153135940, 1273241146218823, 49928549099500206, 2097300313258417056, 93953420539864844743, 4470694981375022862697, 225184078001798318202935
OFFSET
0,3
COMMENTS
Exponential transform of A023887.
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} sigma_k(k) * binomial(n-1,k-1) * a(n-k).
MATHEMATICA
nmax = 20; CoefficientList[Series[E^(Sum[DivisorSigma[k, k]*x^k/k!, {k, 1, nmax}]), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2022 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sigma(k, k)*x^k/k!))))
(PARI) a(n) = if(n==0, 1, sum(k=1, n, sigma(k, k)*binomial(n-1, k-1)*a(n-k)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 05 2022
STATUS
approved