login
A352795
Number of ways to tile a 4 X n strip with squares and L-shaped heptominoes with legs of equal length.
0
1, 1, 1, 1, 5, 11, 19, 29, 55, 113, 223, 409, 747, 1405, 2691, 5109, 9587, 17965, 33851, 63973, 120731, 227365, 428091, 806789, 1521291, 2867861, 5404363, 10183893, 19193547, 36177333, 68186667, 128509269, 242195691, 456468629, 860324843, 1621477013
OFFSET
0,5
FORMULA
a(n) = a(n-1) + 4*a(n-4) + 2*a(n-5) + 2*a(n-6) + 2*a(n-7).
G.f.: 1/((1 + x)*(1 - 2*x + 2*x^2 - 2*x^3 - 2*x^4 - 2*x^6)). - Stefano Spezia, Apr 04 2022
EXAMPLE
Here are two such tilings for a 4 X 4 strip. The latter has four rotations thus demonstrating that a(4)=5.
._______. ._______.
|_|_|_|_| | |_|_|_|
|_|_|_|_| | |_|_|_|
|_|_|_|_| | |_|_|_|
|_|_|_|_| |_______|
MATHEMATICA
LinearRecurrence[{1, 0, 0, 4, 2, 2, 2}, {1, 1, 1, 1, 5, 11, 19}, 36];
CROSSREFS
Cf. A345953.
Sequence in context: A078179 A045451 A338566 * A368898 A326665 A100920
KEYWORD
nonn,easy
AUTHOR
Drisana Bhatia, Apr 03 2022
STATUS
approved