Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 29 2022 11:30:48
%S 0,0,1,1,2,2,1,1,3,3,1,1,2,2,3,3,4,4,1,1,2,2,3,3,3,3,4,4,3,3,3,3,5,5,
%T 1,1,2,2,3,3,3,3,4,4,3,3,3,3,4,4,5,5,3,3,3,3,4,4,4,4,3,3,4,4,6,6,1,1,
%U 2,2,3,3,3,3,4,4,3,3,3,3,4,4,5,5,3,3,3,3,4,4,4,4,3,3,4,4,5,5,6,6,3,3,3,3,4,4,4,4
%N a(n) = w(n - w(n)), where w(n) is the binary weight of n, A000120(n).
%H Michael S. Branicky, <a href="/A352784/b352784.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = A000120(n - A000120(n)); a(n) = A000120(A011371(n)).
%F a(n) = A280700(floor(n/2)). - _Georg Fischer_, Nov 29 2022
%e a(8) = A000120(8 - A000120(8)) = 3.
%p a:= n-> (w-> w(n-w(n)))(k-> add(i, i=Bits[Split](k))):
%p seq(a(n), n=0..120); # _Alois P. Heinz_, May 24 2022
%t w[n_] := DigitCount[n, 2, 1]; a[n_] := w[n - w[n]]; Array[a, 100, 0] (* _Amiram Eldar_, Apr 02 2022 *)
%o (Python)
%o def w(n): return bin(n).count("1")
%o def a(n): return w(n - w(n))
%o print([a(n) for n in range(108)]) # _Michael S. Branicky_, Apr 02 2022
%Y Cf. A000120, A011371, A280700.
%K nonn,base,easy
%O 0,5
%A _Ctibor O. Zizka_, Apr 02 2022