OFFSET
1,2
EXAMPLE
If we use J(n, f(x)) notation for the n-th integration, then we can find the denominator
J(1, W(x)) = x/(W(x) (W(x)^2 - W(x) + 1) + c
J(2, W(x)) = x^2/(8W(x)^2) (4W(x)^3 - 6W(x)^2 + 6W(x) + 1) + kx + c
J(3, W(x)) = x^3/(648W(x)^3) (108W(x)^4 - 198W(x)^3 + 198W(x)^2 + 57W(x) + 8) + x^2/2 h + kx + c
...
where c, k, h are constants.
MATHEMATICA
max = 10; Table[Denominator[Together[Rest[NestList[Integrate[#, x] &, LambertW[x], max]]]][[k]] / ProductLog[x]^k, {k, 1, max}] (* Vaclav Kotesovec, Apr 14 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Lukáš Backa, Mar 21 2022
EXTENSIONS
More terms from Vaclav Kotesovec, Apr 14 2022
STATUS
approved