login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352593
Denominator values occurring in formulas for the n-th integration of the Lambert W function.
1
1, 8, 648, 82944, 1296000000, 69984000000, 403443833184000000, 26440095051546624000000, 42154051662866968215552000000, 263462822892918551347200000000000, 826859199578154686310659783668531200000000000
OFFSET
1,2
EXAMPLE
If we use J(n, f(x)) notation for the n-th integration, then we can find the denominator
J(1, W(x)) = x/(W(x) (W(x)^2 - W(x) + 1) + c
J(2, W(x)) = x^2/(8W(x)^2) (4W(x)^3 - 6W(x)^2 + 6W(x) + 1) + kx + c
J(3, W(x)) = x^3/(648W(x)^3) (108W(x)^4 - 198W(x)^3 + 198W(x)^2 + 57W(x) + 8) + x^2/2 h + kx + c
...
where c, k, h are constants.
MATHEMATICA
max = 10; Table[Denominator[Together[Rest[NestList[Integrate[#, x] &, LambertW[x], max]]]][[k]] / ProductLog[x]^k, {k, 1, max}] (* Vaclav Kotesovec, Apr 14 2022 *)
CROSSREFS
Cf. A352592.
Sequence in context: A196588 A197045 A258385 * A267968 A253268 A235368
KEYWORD
nonn
AUTHOR
Lukáš Backa, Mar 21 2022
EXTENSIONS
More terms from Vaclav Kotesovec, Apr 14 2022
STATUS
approved