OFFSET
0,3
FORMULA
Sum_{n>=0} a(n) * x^(2*n) / (2*n)!^2 = 1 / (1 - Sum_{n>=1} x^(2*n) / (2*n)!^2).
Sum_{n>=0} a(n) * x^(2*n) / (2*n)!^2 = 1 / (2 - (BesselI(0,2*sqrt(x)) + BesselJ(0,2*sqrt(x))) / 2).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[Binomial[2 n, 2 k]^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 12}]
nmax = 24; Take[CoefficientList[Series[1/(1 - Sum[x^(2 k)/(2 k)!^2, {k, 1, nmax}]), {x, 0, nmax}], x] Range[0, nmax]!^2, {1, -1, 2}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 17 2022
STATUS
approved