login
A352376
Expansion of e.g.f. exp(1 - (1 + x) * exp(x)).
1
1, -2, 1, 6, -2, -58, -91, 732, 4365, -1468, -140682, -685886, 1791101, 43923266, 216543097, -939472974, -22047365454, -127801626362, 541608607233, 16524264652568, 124850392700061, -279906371211584, -16968403342944782, -176737444660619046
OFFSET
0,2
LINKS
FORMULA
a(0) = 1; a(n) = -Sum_{k=1..n} (k+1) * binomial(n-1,k-1) * a(n-k).
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[1-(1+x)Exp[x]], {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Oct 11 2024 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(1-(1+x)*exp(x))))
(PARI) a(n) = if(n==0, 1, -sum(k=1, n, (k+1)*binomial(n-1, k-1)*a(n-k)));
CROSSREFS
Sequence in context: A181811 A284431 A333078 * A337470 A006019 A201146
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 15 2022
STATUS
approved