%I #20 Mar 29 2022 11:00:35
%S 5,1,2,4,8,7,5,10,11,13,8,16,14,10,11,4,8,7,14,10,11,13,17,7,5,10,11,
%T 13,8,16,14,19,11,13,8,16,14,19,20,13,8,16,14,19,20,13,8,16,14,19,20,
%U 22,8,16,14,19,20,22,17,16,14,19,20,13,17,16,14,19,20,13
%N Sum of digits of A007618.
%D D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
%H D. R. Kaprekar, <a href="/A003052/a003052_2.pdf">The Mathematics of the New Self Numbers</a>, 1963. [annotated and scanned]
%F a(n) = A007953(A007618(n)).
%F a(n) = A007618(n+1)-A007618(n). - _Chai Wah Wu_, Mar 29 2022
%o (PARI) lista(nn) = my(s, x=5); for(n=1, nn, print1(s=sumdigits(x), ", "); x+=s); \\ _Jinyuan Wang_, Mar 22 2022
%o (Python)
%o from itertools import islice
%o def A352375_gen(): # generator of terms
%o a = 5
%o while True:
%o yield (s := sum(int(d) for d in str(a)))
%o a += s
%o A352375_list = list(islice(A352375_gen(),20)) # _Chai Wah Wu_, Mar 29 2022
%Y Cf. A007618, A007953.
%K nonn,base
%O 1,1
%A _Mateusz Pasternak_, Mar 14 2022
%E More terms from _Jinyuan Wang_, Mar 22 2022