Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Mar 15 2022 08:17:23
%S 1,0,1,0,2,1,0,6,6,1,0,20,36,12,1,0,70,220,120,20,1,0,252,1380,1140,
%T 300,30,1,0,924,8904,10710,4060,630,42,1,0,3432,59024,101136,52640,
%U 11480,1176,56,1,0,12870,400824,966672,671328,195300,27720,2016,72,1
%N Triangle read by rows. The incomplete Bell transform of the central binomial numbers.
%F Given a sequence s let s|n denote the initial segment s(0), s(1), ..., s(n).
%F (T(s))(n, k) = IncompleteBellPolynomial(n, k, s|n) where s(n) = binomial(2*n, n).
%e Triangle starts:
%e [0] 1;
%e [1] 0, 1;
%e [2] 0, 2, 1;
%e [3] 0, 6, 6, 1;
%e [4] 0, 20, 36, 12, 1;
%e [5] 0, 70, 220, 120, 20, 1;
%e [6] 0, 252, 1380, 1140, 300, 30, 1;
%e [7] 0, 924, 8904, 10710, 4060, 630, 42, 1;
%e [8] 0, 3432, 59024, 101136, 52640, 11480, 1176, 56, 1;
%e [9] 0, 12870, 400824, 966672, 671328, 195300, 27720, 2016, 72, 1;
%p CentralBinomial := n -> binomial(2*n, n):
%p for n from 0 to 9 do
%p seq(IncompleteBellB(n, k, seq(CentralBinomial(j), j = 0..n)), k = 0..n) od;
%Y Cf. A000984, A352370 (row sums), A352371 (alternating row sums).
%Y Cf. A352363, A352366.
%K nonn,tabl
%O 0,5
%A _Peter Luschny_, Mar 15 2022