Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Mar 14 2022 02:42:03
%S 0,1,3,6,8,10,20,27,40,49,54,58,63,68,88,93,119,136,150,167,221,238,
%T 288,300,310,322,334,338,360,372,382,394,406,508,530,542,696,737,771,
%U 812,833,867,908,942,983,1242,1276,1317,1392,1681,1710,1734,1763,1792,1802
%N Numbers whose maximal Pell representation (A352339) is palindromic.
%C A000129(n) - 2 is a term for n > 1. The maximal Pell representations of these numbers are 0, 11, 121, 1221, 12221, ... (0 and A132583).
%C A048739 is a subsequence since these are the repunit numbers in the maximal Pell representation.
%C A065113 is a subsequence since the maximal Pell representation of A065113(n) is 2*n 2's.
%H Amiram Eldar, <a href="/A352341/b352341.txt">Table of n, a(n) for n = 1..10000</a>
%e The first 10 terms are:
%e n a(n) A352339(a(n))
%e -- ---- -------------
%e 1 0 0
%e 2 1 1
%e 3 3 11
%e 4 6 22
%e 5 8 111
%e 6 10 121
%e 7 20 1111
%e 8 27 1221
%e 9 40 2222
%e 10 49 11111
%t pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazy[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, FromDigits[v[[i[[1, 1]] ;; -1]]]]]; Select[Range[0, 2000], PalindromeQ[lazy[#]] &]
%Y Cf. A000129, A048739, A065113, A132583, A352339.
%Y Similar sequences: A002113, A006995, A014190, A094202, A331191, A351712, A351717, A352087, A352105, A352319.
%K nonn,base
%O 1,3
%A _Amiram Eldar_, Mar 12 2022