login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the sum of digits of n in the maximal Pell representation of n (A352339).
5

%I #8 Mar 14 2022 02:42:22

%S 0,1,1,2,2,3,4,2,3,3,4,5,3,4,4,5,3,4,5,3,4,4,5,6,4,5,5,6,4,5,6,4,5,5,

%T 6,7,5,6,6,7,8,4,5,5,6,4,5,6,4,5,5,6,7,5,6,6,7,5,6,7,5,6,6,7,8,6,7,7,

%U 8,9,5,6,6,7,5,6,7,5,6,6,7,8,6,7,7,8,6

%N a(n) is the sum of digits of n in the maximal Pell representation of n (A352339).

%H Amiram Eldar, <a href="/A352340/b352340.txt">Table of n, a(n) for n = 0..10000</a>

%H A. F. Horadam, <a href="https://www.fq.math.ca/Scanned/32-3/horadam2.pdf">Maximal representations of positive integers by Pell numbers</a>, The Fibonacci Quarterly, Vol. 32, No. 3 (1994), pp. 240-244.

%F a(n) = A007953(A352339(n)).

%F a(n) >= A265744(n).

%t pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; a[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 0, Total[v[[i[[1, 1]] ;; -1]]]]]; Array[a, 100, 0]

%Y Cf. A000129, A007953, A352339.

%Y Similar sequences: A053735, A007895, A112310, A265744, A278043, A352104.

%K nonn,base

%O 0,4

%A _Amiram Eldar_, Mar 12 2022