login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352276
a(0) = 1 and a(n) = Sum_{k = 0..3*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
2
1, 9, 625, 58785, 5986993, 633580634, 68611922731, 7545931449401, 839183314181297, 94112350842056469, 10623982584664109750, 1205644823097085684641, 137414820511792364274091, 15718880489100999321142976, 1803621273322664188151352631, 207499462144488863314062180035
OFFSET
0,2
COMMENTS
The following identity can be easily verified using Maple's SumTools:-Summation procedure: for n >= 1, A005810(n) = binomial(4*n,n) = Sum_{k = 0..3*n} n/(n + k)*binomial(n + k,k).
The binomial coefficients A005810(n) are known to satisfy the supercongruences A005810(n*p^r) == A005810(n*p^(r-1)) (mod p^(3*r)) for primes p >= 5 and positive integers n and r (see Meštrović, equation 39).
Calculation suggests that the present sequence satisfies the same congruences.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for primes p >= 5 and positive integers n and r.
More generally, for m a positive integer, define a sequence u_m by setting u_m(n) = Sum_{k = 0..m*n} n/(n + 2*k)*binomial(n + 2*k,k) for n >= 1.
Then we conjecture that each sequence u_m satisfies the above supercongruences. This is the case m = 3. See A333093 (case m = 1) and A352275 (m = 2).
FORMULA
a(n) ~ 7^(7*n + 3/2) / (37 * sqrt(Pi*n) * 2^(8*n + 3/2) * 3^(3*n + 1/2)). - Vaclav Kotesovec, Mar 15 2022
EXAMPLE
Examples of supercongruences:
a(11) - a(1) = 1205644823097085684641 - 9 = (2^3)*3*(11^3)*43*2887*5059* 60096637 == 0 (mod 11^3)
a(3*5) - a(3) = 207499462144488863314062180035 - 58785 = 2*(5^4)*1801* 4959701*18583938263214197 == 0 (mod 5^4)
MATHEMATICA
nterms=25; Join[{1}, Table[Sum[n/(n+2k)Binomial[n+2k, k], {k, 0, 3n}], {n, nterms-1}]] (* Paolo Xausa, Apr 10 2022 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Mar 10 2022
STATUS
approved