login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352266
Integers that need 8 iterations of the map x->A352172(x) to reach 1.
8
27, 57, 72, 75, 127, 157, 172, 175, 207, 217, 270, 271, 355, 457, 475, 507, 517, 535, 547, 553, 570, 571, 574, 702, 705, 712, 715, 720, 721, 745, 750, 751, 754, 1027, 1057, 1072, 1075, 1127, 1157, 1172, 1175, 1207, 1217, 1270, 1271, 1355, 1457, 1475, 1507, 1517, 1535, 1547
OFFSET
1,1
EXAMPLE
27 -> 2744 -> 11239424 -> 5159780352 -> 54010152000000000 -> 8000000 -> 512 -> 1000 -> 1.
MATHEMATICA
f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[1547], q[#, 8] &] (* Amiram Eldar, Mar 10 2022 *)
PROG
(PARI) f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172
isok8(n) = {for (k=1, 8, n = f(n); if ((n==1), return(k==8)); ); }
(Python)
from math import prod
def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')
def ok(x, iters=8):
i = 0
while i < iters and x != 1: i, x = i+1, A352172(x)
return i == iters and x == 1
print([k for k in range(1548) if ok(k)]) # Michael S. Branicky, Mar 10 2022
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Mar 10 2022
STATUS
approved