login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers that need 2 iterations of the map x->A352172(x) to reach 1.
8

%I #12 Mar 10 2022 17:33:37

%S 25,52,125,152,205,215,250,251,455,502,512,520,521,545,554,1025,1052,

%T 1125,1152,1205,1215,1250,1251,1455,1502,1512,1520,1521,1545,1554,

%U 2005,2015,2050,2051,2105,2115,2150,2151,2255,2500,2501,2510,2511,2525,2552,4055,4155,4505

%N Integers that need 2 iterations of the map x->A352172(x) to reach 1.

%e 25 -> 1000 -> 1.

%t f[n_] := (Times @@ Select[IntegerDigits[n], # > 1 &])^3; q[n_, len_] := (v = Nest[f, n, len - 1]) != 1 && f[v] == 1; Select[Range[4505], q[#, 2] &] (* _Amiram Eldar_, Mar 10 2022 *)

%o (PARI) f(n) = vecprod(apply(x->x^3, select(x->(x>1), digits(n)))); \\ A352172

%o isok2(n) = {for (k=1, 2, n = f(n); if ((n==1), return(k==2)););}

%o (Python)

%o from math import prod

%o def A352172(n): return prod(int(d)**3 for d in str(n) if d != '0')

%o def ok(x):

%o x = A352172(x)

%o return x != 1 and A352172(x) == 1

%o print([k for k in range(4506) if ok(k)]) # _Michael S. Branicky_, Mar 10 2022

%Y Cf. A352172. Subsequence of A351876.

%Y Cf. A352261, A352262, A352263, A352264, A352265, A352266, A352267, A352268.

%K nonn,base

%O 1,1

%A _Michel Marcus_, Mar 10 2022