login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers of the form (x-y)*(x^3-y^3).
3

%I #11 May 17 2024 01:28:37

%S 7,19,37,52,61,91,112,127,169,189,196,217,271,304,331,351,397,436,469,

%T 496,547,567,592,631,721,772,817,832,837,919,976,1027,1075,1141,1161,

%U 1204,1261,1264,1387,1456,1519,1539,1657,1675,1732,1792,1801,1951,1971,2032,2052

%N Positive integers of the form (x-y)*(x^3-y^3).

%C Integers that are in the A352242 triangle.

%H Robert Israel, <a href="/A352243/b352243.txt">Table of n, a(n) for n = 1..10000</a>

%e 7, 19, 37, 52 and 61 are respectively A352242(1,1), A352242(2,2), A352242(3,3), A352242(2,1) and A352242(4,4).

%p N:= 10^4: # for terms <= N

%p S:= {}:

%p for y from 1 while 3*y^2 + 3*y + 1 <= N do

%p for x from y+1 do

%p v:= (x-y)*(x^3-y^3);

%p if v > N then break fi;

%p S:= S union {v};

%p od; od:

%p sort(convert(S,list)); # _Robert Israel_, May 16 2024

%o (PARI) row(n) = vector(n-1, k, (n-k)*(n^3-k^3));

%o lista(nn) = {my(list = List(), n=2); while (3*n*(n-1)+1 <= nn, my(rown = row(n)); for (k=1, #rown, if (rown[k] <= nn, listput(list, rown[k]))); n++;); Set(Vec(list));}

%Y Cf. A352242, A352244.

%K nonn

%O 1,1

%A _Michel Marcus_, Mar 09 2022