login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 / (A(x) - 3*x*A'(x)).
4

%I #10 Nov 16 2023 12:54:20

%S 1,1,4,37,532,9994,226252,5910445,173581060,5634589906,199792389160,

%T 7671942375898,316936631324368,14011781050744984,660054967923455212,

%U 33008607551445324157,1746771084107236755604,97536010045722766992778,5731874036042145864368824

%N G.f. A(x) satisfies: A(x) = 1 + x*A(x)^2 / (A(x) - 3*x*A'(x)).

%H Vaclav Kotesovec, <a href="/A352237/b352237.txt">Table of n, a(n) for n = 0..378</a>

%F G.f. A(x) satisfies:

%F (1) [x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1) * A(x)^(3*n+1) for n >= 1.

%F (2) A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)).

%F (3) A'(x) = A(x) * (1 + x*A(x)/(1 - A(x))) / (3*x).

%F (4) A(x) = exp( Integral (1 + x*A(x)/(1 - A(x)))/(3*x) dx ).

%F a(n) ~ c * 3^n * n! * n^(4/3), where c = 0.0543186200722307001992331... - _Vaclav Kotesovec_, Nov 16 2023

%e G.f.: A(x) = 1 + x + 4*x^2 + 37*x^3 + 532*x^4 + 9994*x^5 + 226252*x^6 + 5910445*x^7 + 173581060*x^8 + ...

%e such that A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)).

%e Related table.

%e The table of coefficients of x^k in A(x)^(3*n+1) begins:

%e n=0: [1, 1, 4, 37, 532, 9994, 226252, ...];

%e n=1: [1, 4, 22, 200, 2717, 48788, 1069122, ...];

%e n=2: [1, 7, 49, 462, 6069, 104664, 2219784, ...];

%e n=3: [1, 10, 85, 850, 11020, 183832, 3777355, ...];

%e n=4: [1, 13, 130, 1391, 18083, 294203, 5869734, ...];

%e n=5: [1, 16, 184, 2112, 27852, 445632, 8659920, ...];

%e n=6: [1, 19, 247, 3040, 41002, 650161, 12353059, ...]; ...

%e in which the following pattern holds:

%e [x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1) * A(x)^(3*n+1), n >= 1,

%e as illustrated by

%e [x^1] A(x)^4 = 4 = [x^0] 4*A(x)^4 = 4*1;

%e [x^2] A(x)^7 = 49 = [x^1] 7*A(x)^7 = 7*7;

%e [x^3] A(x)^10 = 850 = [x^2] 10*A(x)^10 = 10*85;

%e [x^4] A(x)^13 = 18083 = [x^3] 13*A(x)^13 = 13*1391;

%e [x^5] A(x)^16 = 445632 = [x^4] 16*A(x)^16 = 16*27852;

%e [x^6] A(x)^19 = 12353059 = [x^5] 19*A(x)^19 = 19*650161; ...

%e Also, compare the above terms along the diagonal to the series

%e B(x) = A(x*B(x)^3) = 1 + x + 7*x^2 + 85*x^3 + 1391*x^4 + 27852*x^5 + 650161*x^6 + 17204220*x^7 + ...

%e where B(x)^3 = (1/x) * Series_Reversion( x/A(x)^3 ).

%o (PARI) /* Using A(x) = 1 + x*A(x)^2/(A(x) - 3*x*A'(x)) */

%o {a(n) = my(A=1); for(i=1,n, A = 1 + x*A^2/(A - 3*x*A' + x*O(x^n)) );

%o polcoeff(A,n)}

%o for(n=0,20, print1(a(n),", "))

%o (PARI) /* Using [x^n] A(x)^(3*n+1) = [x^(n-1)] (3*n+1)*A(x)^(3*n+1) */

%o {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);

%o A[#A] = polcoeff((x*Ser(A)^(3*(#A)-2) - Ser(A)^(3*(#A)-2)/(3*(#A)-2)),#A-1));A[n+1]}

%o for(n=0,20, print1(a(n),", "))

%Y Cf. A088715, A286797, A317352, A352235, A352236, A352238.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Mar 08 2022