Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 13 2022 18:44:14
%S 3587409,8741691,26122131,355957875,2593625571,2746367559,70607389041,
%T 367954598375,7006302268875,7916366521691,8091803325879,
%U 28332679374909,144757538551899,1026401875608375,9339629571431315,14295468330521189,49873257556492139,42892025638971003759
%N Centered cube numbers that can be written as sums of two other cubes in at least two ways.
%C Numbers A such that A = B^3 + (B+1)^3 = C^3 + D^3 = E^3 + F^3 with C <> (D +- 1), E <> (F +- 1), E > C > B, C > |D| and E > |F|, where A = a(n) (this sequence), B = A352221(n), C = A352222(n), D = A352223(n), E = A352224(n) and F = A352225(n).
%C Subsequence of A005898 and of A352133.
%H A. Grinstein, <a href="https://web.archive.org/web/20040320144821/http://zadok.org/mattandloraine/1729.html">Ramanujan and 1729</a>, University of Melbourne Dept. of Math and Statistics Newsletter: Issue 3, 1998.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/CenteredCubeNumber.html">Centered Cube Number</a>
%F a(n) = A352221(n)^3 + (A352221(n) + 1)^3 = A352222(n)^3 + A352223(n)^3 = A352224(n)^3 + A352225(n)^3.
%e 3587409 belongs to the sequence because 3587409 = 121^3 + 122^3 = 153^3 + 18^3 = 369^3 + (-360)^3.
%Y Cf. A005898, A001235, A272885, A352133, A352134, A352135, A352136, A352221, A352222, A352223, A352224, A352225.
%K nonn
%O 1,1
%A _Vladimir Pletser_, Mar 07 2022
%E a(6)-a(18) from _Jon E. Schoenfield_, Mar 09 2022