login
A352170
Primes p such that p+4, 3*p+4 and 3*p+8 are also prime.
1
3, 13, 103, 223, 823, 2953, 7873, 11113, 11863, 13033, 13963, 16063, 22153, 23743, 24763, 27733, 30133, 31513, 34213, 35593, 39883, 41893, 43063, 50383, 51043, 54493, 62983, 65323, 66343, 68473, 71593, 72643, 87793, 88423, 98893, 101203, 106363, 110563, 127873, 134593, 136603, 158563, 164623, 165703
OFFSET
1,1
COMMENTS
Members p of A023200 such that 3*p+4 is also in A023200.
Except for 3, all terms == 13 (mod 30).
LINKS
EXAMPLE
a(4) = 223 is a term because 223, 223+4 = 227, 3*223+4 = 673 and 3*223+8 = 677 are all prime.
MAPLE
select(p -> isprime(p) and isprime(p+4) and isprime(3*p+4) and isprime(3*p+8), [3, seq(i, i=13..10^6, 30)]);
MATHEMATICA
Select[Range[200000], AllTrue[{#, # + 4, 3*# + 4, 3*# + 8}, PrimeQ] &] (* Amiram Eldar, Mar 07 2022 *)
PROG
(Python)
from sympy import sieve, isprime
for p in sieve.primerange(0, 10**6):
if(all(isprime(q) for q in [p+4, 3*p+4, 3*p+8])):
print (p, end=", ") # Martin Ehrenstein, Mar 09 2022
CROSSREFS
Intersection of A023200, A023209 and A023210.
Sequence in context: A323687 A338697 A168417 * A240167 A127004 A068168
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Mar 07 2022
STATUS
approved