login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Starts of runs of 3 consecutive lazy-tribonacci-Niven numbers (A352107).
11

%I #11 Mar 07 2022 19:00:41

%S 175,1183,2259,5290,12969,21130,51820,70629,78090,79540,81818,129648,

%T 160224,169234,180908,228240,238574,249494,278628,332891,376335,

%U 383866,398650,399644,454090,550380,565200,683448,683604,694274,728895,754390,782110,809830,837550

%N Starts of runs of 3 consecutive lazy-tribonacci-Niven numbers (A352107).

%H Amiram Eldar, <a href="/A352109/b352109.txt">Table of n, a(n) for n = 1..10000</a>

%e 175 is a term since 175, 176 and 177 are all divisible by the number of terms in their maximal tribonacci representation:

%e k A352103(k) A352104(k) k/A352104(k)

%e --- ---------- ---------- ------------

%e 175 11111110 7 25

%e 176 11111111 8 22

%e 177 100100100 3 59

%t t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; lazyTriboNivenQ[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; seq[count_, nConsec_] := Module[{tri = lazyTriboNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ tri, c++; AppendTo[s, k - nConsec]]; tri = Join[Rest[tri], {lazyTriboNivenQ[k]}]; k++]; s]; seq[30, 3]

%Y Cf. A352103, A352104.

%Y Subsequence of A352107 and A352108.

%Y A352110 is a subsequence.

%Y Similar sequences: A154701, A328206, A328210, A328214, A330932, A331087, A333428, A334310, A331822, A342428, A344343, A351716, A351721, A352091.

%K nonn,base

%O 1,1

%A _Amiram Eldar_, Mar 05 2022