Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 11 2023 03:54:54
%S 0,1,1,1,1,2188,1,1,2188,78126,1,2188,1,823544,80313,1,1,4785157,1,
%T 78126,825731,19487172,1,2188,78126,62748518,4785157,823544,1,
%U 170939688,1,1,19489359,410338674,901669,4785157,1,893871740,62750705,78126,1,1801914272,1
%N Sum of the 7th powers of the odd proper divisors of n.
%H Seiichi Manyama, <a href="/A352035/b352035.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F a(n) = Sum_{d|n, d<n, d odd} d^7.
%F G.f.: Sum_{k>=1} (2*k-1)^7 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022
%F From _Amiram Eldar_, Oct 11 2023: (Start)
%F a(n) = A321811(n) - n^7*A000035(n).
%F Sum_{k=1..n} a(k) ~ c * n^8, where c = (zeta(8)-1)/16 = 0.0002548347... . (End)
%e a(10) = 78126; a(10) = Sum_{d|10, d<10, d odd} d^7 = 1^7 + 5^7 = 78126.
%t f[2, e_] := 1; f[p_, e_] := (p^(7*e+7) - 1)/(p^7 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^7, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *)
%Y Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), this sequence (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
%Y Cf. A000035, A013666, A321811.
%K nonn,easy
%O 1,6
%A _Wesley Ivan Hurt_, Mar 01 2022