login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352019
G.f. A(x) satisfies: [x^n] A(x)^(n-1) = [x^n] -1/A(x)^n, for n > 1.
0
1, 1, 3, 32, 813, 35091, 2239211, 196853182, 22793279166, 3364540700239, 617230596484085, 137845145575722714, 36837526276927643835, 11610208860469854424443, 4262404755708966974829048, 1803378442987799820993028822
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 32*x^3 + 813*x^4 + 35091*x^5 + 2239211*x^6 + 196853182*x^7 + 22793279166*x^8 + ...
We will use the following tables to illustrate the definition of the g.f. A(x).
The table of coefficients of x^k in A(x)^n begins:
n=1: [1, 1, 3, 32, 813, 35091, 2239211, 196853182, ...];
n=2: [1, 2, 7, 70, 1699, 72000, 4554506, 398447364, ...];
n=3: [1, 3, 12, 115, 2667, 110850, 6948927, 604906389, ...];
n=4: [1, 4, 18, 168, 3727, 151776, 9425698, 816358612, ...];
n=5: [1, 5, 25, 230, 4890, 194926, 11988240, 1032937150, ...];
n=6: [1, 6, 33, 302, 6168, 240462, 14640187, 1254780150, ...];
n=7: [1, 7, 42, 385, 7574, 288561, 17385403, 1482031076, ...];
...
and the table of coefficients of x^k in 1/A(x)^n starts:
n=1: [1,-1, -2, -27, -748, -33385, -2166001, -192231746, ...];
n=2: [1,-2, -3, -50,-1438, -65166, -4261511, -379957558, ...];
n=3: [1,-3, -3, -70,-2076, -95436, -6289106, -563289078, ...];
n=4: [1,-4, -2, -88,-2667,-124280, -8251230, -742334276, ...];
n=5: [1,-5, 0,-105,-3215,-151776,-10150205, -917197625, ...];
n=6: [1,-6, 3,-122,-3723,-177996,-11988240,-1087980264, ...];
n=7: [1,-7, 7,-140,-4193,-203007,-13767439,-1254780150, ...];
...
now, upon comparing these two tables, we see that
[x^n] A(x)^(n-1) = [x^n] -1/A(x)^n for n > 1,
as illustrated by
[x^2] A(x) = 3 = [x^2] -1/A(x)^2 = -(-3);
[x^3] A(x)^2 = 70 = [x^3] -1/A(x)^3 = -(-70);
[x^4] A(x)^3 = 2667 = [x^4] -1/A(x)^4 = -(-2667);
[x^5] A(x)^4 = 151776 = [x^5] -1/A(x)^5 = -(-151776);
[x^6] A(x)^5 = 11988240 = [x^6] -1/A(x)^6 = -(-11988240);
[x^7] A(x)^6 = 1254780150 = [x^7] -1/A(x)^7 = -(-1254780150);
...
Incidentally, note that the coefficients along the diagonals in the above tables form the series
log(B(x)) = x + 3*x^2/2 + 70*x^3/3 + 2667*x^4/4 + 151776*x^5/5 + 11988240*x^6/6 + 1254780150*x^7/7 + ...
where
B(x) = A(x/B(x)) = 1 + x + 2*x^2 + 25*x^3 + 692*x^4 + 31070*x^5 + 2030041*x^6 + 181330044*x^7 + ...
Further, let
C(x) = A(x*C(x)) = 1 + x + 4*x^2 + 42*x^3 + 978*x^4 + 40077*x^5 + 2483629*x^6 + 214354877*x^7 + ...
then
(C(x) + x*C'(x))/C(x)^2 - (1-x) = x*B'(x)/B(x) = x + 3*x^2 + 70*x^3 + 2667*x^4 + 151776*x^5 + 11988240*x^6 + ...
which is due to the property of g.f. A(x) given in the definition.
PROG
(PARI) {a(n) = my(A=[1, 1], m); for(i=1, n, A=concat(A, 0); m=#A-1;
A[#A] = polcoeff( Ser(A)^(m-1) + 1/Ser(A)^m, m); ); A[n+1]}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Sequence in context: A297558 A283716 A373875 * A374574 A355084 A202806
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 28 2022
STATUS
approved