Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 17 2022 23:58:19
%S -4,-2,-1,-1,-1,-1,-1,-2,-1,1,-1,2,-4,2,-1,1,-18,-6,-2,-1,-2,-2,-2,-3,
%T -2,2,-2,3,-18,6,-2,1,2,-2,2,-1,2,2,2,1,-48,-12,-3,-1,-12,-6,-3,-2,-3,
%U -3,-3,-4,-3,3,-3,4,-12,6,-3,2,-48,12,-3,1,12,-6,3,-1,3,-3,3,-2,3,3,3,2,12,6,3,1
%N Four-column table read by rows, giving quadruples of integers [w,x,y,z] such that y^2 - y - x*z = 0 and x^2 = w*y with w*y != 0 and y != 1, sorted by the absolute value of y with the negatives first, then by x in ascending order.
%C When [w,x,y,z] is a row, f(a,b,c) = w*a*b*c + x*(a*b + a*c + b*c) + y*(a+b+c) + z is associative in the following sense. f((a,b,c),d,e) = f(a,f(b,c,d),e) = f(a,b,f(c,d,e)) for all a,b,c,d,e. f(a,b,c) is commutative because of its symmetry.
%C For each quadruple, the corresponding f(a,b,c) has a unique zero element (call it theta), meaning f(a,b,theta) = f(a,theta,b) = f(theta,a,b) = theta for all a,b. Theta = -y/x = - x/w. f(a,b,c) also has not one but two identity elements (id_1 and id_2), meaning f(a,id_1,id_1) = f(id_1,a,id_1) = f(id_1,id_1,a) = a for all a and f(a,id_2,id_2) = f(id_2,a,id_2) = f(id_2,id_2,a) = a for all a. Id = (-y +- sqrt(y))/x = theta +- sqrt(y)/x. Thus theta = (id_1 + id_2)/2.
%C The identity elements and theta are integers when y is a square and x divides sqrt(y).
%H David Lovler, <a href="/A351986/b351986.txt">Table of n, a(n) for n = 1..10792</a>
%H David Lovler, <a href="/A351986/a351986.txt">The first 2698 quadruples for y up to 100</a>.
%e Table begins:
%e [ w, x, y, z]
%e -------------------
%e [ -4, -2, -1, -1];
%e [ -1, -1, -1, -2];
%e [ -1, 1, -1, 2];
%e [ -4, 2, -1, 1];
%e [-18, -6, -2, -1];
%e [ -2, -2, -2, -3];
%e [ -2, 2, -2, 3];
%e [-18, 6, -2, 1];
%e [ 2, -2, 2, -1];
%e [ 2, 2, 2, 1];
%e [-48, -12, -3, -1];
%e [-12, -6, -3, -2];
%e [ -3, -3, -3, -4];
%e [ -3, 3, -3, 4];
%e [-12, 6, -3, 2];
%e [-48, 12, -3, 1];
%e [ 12, -6, 3, -1];
%e [ 3, -3, 3, -2];
%e [ 3, 3, 3, 2];
%e [ 12, 6, 3, 1];
%e ...
%o (PARI) { my(y=1); fordiv (y^2+y, x, print([-((y^2+y)/x)^2/y, -(y^2+y)/x, -y, -x]) );
%o fordiv (y^2+y, x, print([-(x^2/y), x, -y, (y^2+y)/x]) );
%o for (y = 2, 6, fordiv (y^2+y, x, if(type(w = -(((y^2+y)/x)^2)/y)=="t_INT", print([w, -(y^2+y)/x, -y, -x]) ));
%o fordiv (y^2+y, x, if(type(w = -x^2/y)=="t_INT", print([w, x, -y, (y^2+y)/x]) ));
%o fordiv (y^2-y, x, if(type(w = (((y^2-y)/x)^2)/y)=="t_INT", print([w, -(y^2-y)/x, y, -x]) ));
%o fordiv (y^2-y, x, if(type(w = x^2/y)=="t_INT", print([w, x, y, (y^2-y)/x]) )) )}
%Y Cf. A332083.
%Y The rows of A351581 are a subset.
%K sign,tabf
%O 1,1
%A _David Lovler_, Feb 27 2022