Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #6 Mar 18 2022 00:21:09
%S 1,0,0,1,0,0,0,0,1,0,1,0,2,0,0,2,0,1,0,6,1,3,1,8,5,3,5,7,14,2,13,9,28,
%T 5,22,26,44,17,30,60,59,42,41,120,84,84,66,204,143,144,131,325,268,
%U 226,261,486,498,344,488,739,874
%N Number of integer partitions of n for which the number of even parts, the number of odd parts, the number of even conjugate parts, and the number of odd conjugate parts are all equal.
%e The a(n) partitions for selected n (A = 10):
%e n = 3 12 19 21 23 24 27
%e --------------------------------------------------------------
%e 21 4332 633322 643332 644333 84332211 655443
%e 4431 643321 654321 654332 84441111 655542
%e 644311 665211 654431 85322211 665541
%e 653221 655322 86322111 666333
%e 654211 655421 86421111 666531
%e 664111 664331 A522221111
%e 665321 A622211111
%e 666311
%t conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t Table[Length[Select[IntegerPartitions[n],Count[#,_?EvenQ]==Count[#,_?OddQ]==Count[conj[#],_?EvenQ]==Count[conj[#],_?OddQ]&]],{n,0,30}]
%Y The strict case appears to be the indicator function for A014105.
%Y These partitions are ranked by A350947.
%Y There are four statistics:
%Y - A257991 = # of odd parts, conjugate A344616.
%Y - A257992 = # of even parts, conjugate A350847.
%Y There are six pairings of statistics:
%Y - A045931: # of even parts = # of odd parts:
%Y - ordered A098123
%Y - strict A239241
%Y - ranked by A325698
%Y - A045931: # even conj = # odd conj, ranked by A350848, strict A352129.
%Y - A277579: # even = # odd conj, ranked by A349157, strict A352131.
%Y - A277103: # odd = # odd conj, ranked by A350944, strict A000700.
%Y - A277579: # even conj = # odd, ranked by A350943, strict A352130.
%Y - A350948: # even = # even conj, ranked by A350945.
%Y There are three double-pairings of statistics:
%Y - A351976, ranked by A350949.
%Y - A351977, ranked by A350946.
%Y - A351981, ranked by A351980.
%Y A000041 counts integer partitions, strict A000009.
%Y A103919 and A116482 count partitions by sum and number of odd/even parts.
%Y A195017 = # of even parts - # of odd parts.
%Y Cf. A000070, A122111, A130780, A171966, A236559, A236914, A350849, A350941, A350942, A350950, A350951.
%K nonn
%O 0,13
%A _Gus Wiseman_, Mar 15 2022