Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #38 Mar 18 2023 08:49:14
%S 1,2,4,10,15,15,15,15,15,15,50,50,101,101,101,101,143,143,143,143,143,
%T 143,143,143,143,1916,1916,1916,1916,1916,1916,82286,1134022,1639828,
%U 3483159,3483159,3483159,3917963,3917963,3917963,4729774,4729774,9827775,9827775,43622201,43622201,43622201
%N Smallest positive integer k such that 2^k has no '0' in the last n digits of its ternary expansion.
%C The powers of two are required to have at least n ternary digits, i.e., 2^k >= 3^(n-1).
%C Sloane (1973) conjectured that every power 2^n with n > 15 has a '0' somewhere in its ternary expansion (see A102483 and A346497).
%H Robert I. Saye, <a href="https://arxiv.org/abs/2202.13256">On two conjectures concerning the ternary digits of powers of two</a>, arXiv:2202.13256 [math.NT], 2022.
%t smallest[n_] := Module[{k}, k = Max[1, Ceiling[(n - 1) Log[2, 3]]]; While[MemberQ[Take[IntegerDigits[2^k, 3], -n], 0], ++k]; k]; Table[smallest[n], {n, 1, 20}]
%o (PARI) a(n) = my(k=1); while(!vecmin(Vec(Vecrev(digits(2^k,3)), n)), k++); k; \\ _Michel Marcus_, Feb 26 2022
%o (Python)
%o from sympy.ntheory.digits import digits
%o def a(n, startk=1):
%o k = max(startk, len(bin(3**(n-1))[2:]))
%o pow2 = 2**k
%o while 0 in digits(pow2, 3)[-n:]:
%o k += 1
%o pow2 *= 2
%o return k
%o an = 0
%o for n in range(1, 32):
%o an = a(n, an)
%o print(an, end=", ") # _Michael S. Branicky_, Mar 10 2022
%o (Python)
%o from itertools import count
%o def A351927(n):
%o kmax, m = 3**n, (3**(n-1)).bit_length()
%o k2 = pow(2,m,kmax)
%o for k in count(m):
%o a = k2
%o if 3*a >= kmax:
%o while a > 0:
%o a, b = divmod(a,3)
%o if b == 0:
%o break
%o else:
%o return k
%o k2 = 2*k2 % kmax # _Chai Wah Wu_, Mar 19 2022
%Y Cf. A004642, A117970, A102483, A346497, A351928.
%K nonn,base
%O 1,2
%A _Robert Saye_, Feb 25 2022