login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A351915
Number of polynomials of degree n over GF(2) in which the degrees of all distinct irreducible factors are distinct.
0
1, 2, 3, 6, 12, 24, 47, 94, 186, 372, 732, 1464, 2909, 5818, 11520, 23080, 45890, 91740, 182607, 365214, 727086, 1455764, 2900362, 5799012, 11570477, 23141098, 46148040, 92348504, 184258246, 368453148, 735743974, 1471456940, 2937243564, 5876474992, 11734526504
OFFSET
0,2
COMMENTS
a(n) is the number of polynomials p in F_2[z] with p = p_1^e_1*...*p_k^e_k where each p_i is irreducible and deg(p_i) != deg(p_j) for all i != j.
LINKS
A. Knopfmacher and R. Warlimont, Distinct degree factorizations for polynomials over a finite field, Trans. Amer. Math. Soc. 347 (1995), no. 6, 2235-2243.
FORMULA
G.f.: Product_{n>=1} (b(n)/(1-x^n) - b(n) +1) where b(n) = A001037(n).
EXAMPLE
a(2) = 3 because we have: x^2, (x+1)^2, x^2+x+1.
MATHEMATICA
nn = 30; b := Table[1/n Sum[MoebiusMu[d] 2^(n/d), {d, Divisors[n]}], {n, 1, nn}]; CoefficientList[ Series[Product[b[[i]]/(1 - x^i) - b[[i]] + 1, {i, 1, nn}], {x, 0, nn}], x]
CROSSREFS
Sequence in context: A038085 A124313 A049890 * A262236 A246878 A251709
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Feb 25 2022
STATUS
approved