The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A351858 a(n) = [x^n] (1 + x + x^2)^(3*n)/(1 + x)^(2*n). 8

%I #27 Apr 30 2024 18:42:23

%S 1,1,7,19,103,376,1825,7547,35175,153838,708132,3181091,14616481,

%T 66582283,306501377,1407473269,6497464679,29991098982,138844558150,

%U 643215119214,2985368996228,13868212710623,64508509024241,300324344452479,1399598738196897,6527698842078501

%N a(n) = [x^n] (1 + x + x^2)^(3*n)/(1 + x)^(2*n).

%C Given an integer sequence (g(n))n>=1, there exists a formal power series G(x), with rational coefficients, such that g(n) = [x^n] G(x)^n. The power series G(x) has integer coefficients iff the Gauss congruences g(n*p^r) == g(n*p^(r-1)) (mod p^r) hold for all primes p and positive integers n and r.

%C The central binomial coefficient binomial(2*n,n) = A000984(n) may be defined using the coefficient extraction operator as binomial(2*n,n) = [x^n] ((1 + x)^2)^n and hence the Gauss congruences hold for A000984. Moreover, it is known that the stronger supercongruences A000984(n*p^r) == A000984(n*p^(r-1)) (mod p^(3*r)) hold for primes p >= 5 and positive integers n and r. See Meštrović, equation 39.

%C We define an infinite family of sequences as follows. Let k be a positive integer. Define the rational function G_k(x) = (1 + x + ... + x^k)^(k+1)/(1 + x + ... + x^(k-1))^k and define the sequence u_k by u_k(n) = [x^n] G_k(x)^n. In particular, G_1(x) = (1 + x)^2 and the sequence u_1 is the sequence of central binomial coefficients. The present sequence is the case k = 2. See A351859 for the case k = 3.

%C Conjecture: for k >= 2, each sequence u_k satisfies the same supercongruences as the central binomial coefficients.

%C More generally, if r is a positive integer and s an integer then the sequence defined by u_k(r,s;n) = [x^(r*n)] G_k(x)^(s*n) may satisfy the same supercongruences.

%D R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.

%H R. Meštrović, <a href="https://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012)</a>, arXiv:1111.3057 [math.NT], 2011.

%F a(n) = Sum_{k = 0..n} Sum_{j = 0..n-k} (-1)^(n-k-j)*C(n,k)*C(3*n,j)*C(4*n-2*j-k-1,n-k-j).

%F Conjecture: a(n) = Sum_{k = 0..floor(n/2)} C(3*n,k)*C(n-k,k).

%F The o.g.f. A(x) = 1 + x + 7*x^2 + 19*x^3 + ... is the diagonal of the bivariate rational function 1/(1 - t*(1 + x + x^2)^3/(1 + x)^2) and hence is an algebraic function over the field of rational functions Q(x) by Stanley, Theorem 6.33, p. 197.

%F Let F(x) = (1/x)*Series_Reversion( x*(1 + x)^2/(1 + x + x^2)^3 ) = 1 + x + 4*x^2 + 10*x^3 + 40*x^4 + 133*x^5 + 536*x^6 + .... Then A(x) = 1 + x*F'(x)/F(x).

%F a(n) ~ sqrt(2/9 + 2*sqrt(53/47)*cos(arccos(1259*sqrt(47/53)/1696)/3)/9) * (2*sqrt(164581)*cos(arccos(-90631279/(1316648*sqrt(164581)))/3)/81 - 293/81)^n / sqrt(Pi*n). - _Vaclav Kotesovec_, Jun 05 2022

%e Examples of supercongruences:

%e a(5) - a(1) = 376 - 1 = 3*(5^3) == 0 (mod 5^3)

%e a(2*7)- a(2) = 306501377 - 7 = 2*5*(7^3)*193*463 == 0 (mod 7^3)

%e A(5^2) - a(5) = 6527698842078501 - 376 = (5^6)*17*107*229671647 == 0 (mod 5^6)

%p seq(add(add((-1)^(n-k-j)*binomial(n,k)*binomial(3*n,j)* binomial(4*n-2*j-k-1,n-k-j), j = 0..n-k), k = 0..n), n = 0..25);

%t A351858[n_]:=Sum[(-1)^(n-k-j)Binomial[n,k]Binomial[3n,j]Binomial[4n-2j-k-1,n-k-j],{k,0,n},{j,0,n-k}];Array[A351858,25,0] (* _Paolo Xausa_, Oct 04 2023 *)

%t a[n_]:=SeriesCoefficient[(1 + x + x^2)^(3*n)/(1 + x)^(2*n),{x,0,n}]; Array[a,26,0] (* _Stefano Spezia_, Apr 30 2024 *)

%Y Cf. A000984, A103885, A333090, A333564, A333565, A333579, A333715, A351856, A351857, A351859, A372211, A372212, A372213.

%K nonn,easy

%O 0,3

%A _Peter Bala_, Feb 27 2022

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 21:06 EDT 2024. Contains 372703 sequences. (Running on oeis4.)