login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Distance from the n-th square pyramidal number (sum of the first n positive squares) to the nearest square.
6

%I #33 Aug 04 2023 08:17:23

%S 0,0,1,2,5,6,9,4,8,4,15,22,25,22,9,15,25,21,7,30,46,53,49,32,0,49,40,

%T 41,30,91,46,12,9,15,4,26,77,114,25,91,61,105,15,122,129,66,22,1,1,24,

%U 76,157,170,37,131,141,91,139,165,15,174,247,150,80,39,29

%N Distance from the n-th square pyramidal number (sum of the first n positive squares) to the nearest square.

%C As noted by Conway and Sloane (1999), the only zero terms appear at n = 0, n = 1 and n = 24, and the n = 24 case allows for the Lorentzian construction of the Leech lattice through the A351831 vector.

%C The zero terms are equivalently the subject of the "pile of cannonballs" problem posed by Lucas and solved by Watson. - _Peter Munn_, Aug 03 2023

%D W. Ljunggren, New solution of a problem proposed by E. Lucas, Norsk Mat. Tidsskr. 34 (1952), pp 65-72.

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, entry 24, p 101.

%H Paolo Xausa, <a href="/A351830/b351830.txt">Table of n, a(n) for n = 0..9999</a>

%H Michael A. Bennett, <a href="http://www.math.ubc.ca/~bennett/paper21.pdf">Lucas' Square Pyramid Problem Revisited</a>.

%H Richard E. Borcherds, <a href="https://www.youtube.com/watch?v=ycpmMnO3-Uk">How to construct the Leech lattice</a>, YouTube video, 2022.

%H J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1090/S0273-0979-1982-14985-0">Lorentzian forms for the Leech lattice</a>, Bulletin (New Series) of the American Mathematical Society, Volume 6, Number 2, March 1982.

%H J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1007/978-1-4757-6568-7">Sphere Packings, Lattices and Groups</a>, 3rd edition, Springer, New York, NY, 1999, pp. 524-528.

%H E. Lucas, <a href="http://www.numdam.org/item/NAM_1875_2_14__336_0/">Problem 1180</a>, Nouvelles Ann. Math. (2) 14 (1875), p 336.

%H G. N. Watson, <a href="http://archive.org/stream/messengerofmathe4849cambuoft#page/n9/mode/2up">The problem of the square pyramid</a>, Messenger of Mathematics 48 (1918), pp. 1-22.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Leech_lattice">Leech lattice</a>.

%F From _Paolo Xausa_, Jul 05 2022: (Start)

%F a(n) = A053188(A000330(n)).

%F a(n) = abs(A000330(n) - A353295(n)). (End)

%e a(4) = 5 because the sum of the first 4 positive squares is 1 + 4 + 9 + 16 = 30, the nearest square is 25 and 30 - 25 = 5. - _Paolo Xausa_, Jul 05 2022

%t nterms=66;Array[Abs[(s=#(#+1)(2#+1)/6)-Round[Sqrt[s]]^2]&,nterms,0]

%o (Python)

%o from math import isqrt

%o def a(n):

%o t = n*(n+1)*(2*n+1)//6

%o r = isqrt(t)

%o return min(t - r**2, (r+1)**2 - t)

%o print([a(n) for n in range(66)]) # _Michael S. Branicky_, Feb 21 2022

%Y Cf. A000290, A000330, A053188, A351831, A353295, A354330, A363284.

%K nonn,easy

%O 0,4

%A _Paolo Xausa_, Feb 21 2022

%E Name edited by _Peter Munn_, Aug 04 2023