login
A351755
G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 * A(x/(1 - x)) / (1 - x)^2.
1
1, 1, 1, 1, 1, 1, 1, 3, 7, 15, 31, 63, 127, 257, 535, 1187, 2891, 7751, 22331, 66997, 204473, 626917, 1922395, 5899579, 18192715, 56739881, 180434023, 590010059, 1997588833, 7026454733, 25650892255, 96720885037, 374163527473, 1475021500693, 5893462132221
OFFSET
0,8
FORMULA
a(0) = ... = a(5) = 1; a(n) = Sum_{k=0..n-6} binomial(n-5,k+1) * a(k).
MATHEMATICA
nmax = 34; A[_] = 0; Do[A[x_] = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[n_] := a[n] = If[n < 6, 1, Sum[Binomial[n - 5, k + 1] a[k], {k, 0, n - 6}]]; Table[a[n], {n, 0, 34}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 18 2022
STATUS
approved