login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n into parts of size 1, 5, 10 or 25.
1

%I #10 Jun 10 2024 00:22:55

%S 1,1,1,1,1,2,3,4,5,6,9,13,18,24,31,42,58,80,109,146,197,268,366,499,

%T 676,916,1243,1690,2299,3122,4237,5751,7811,10614,14418,19580,26587,

%U 36106,49043,66614,90473,122869,166866,226632,307810,418060,567784,771122,1047296,1422396,1931845

%N Number of compositions of n into parts of size 1, 5, 10 or 25.

%C Starts to differ from A114044 at n=50.

%H <a href="/index/Mag#change">Index entries for sequences related to making change.</a>

%H <a href="/index/Rec#order_25">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

%F G.f. : 1/(1-x-x^5-x^10-x^25).

%F a(n) = +a(n-1) +a(n-5) +a(n-10) +a(n-25).

%e a(8)=5 counts 5 compositions 1+1+1+1+1+1+1+1 = 1+1+1+5 = 1+1+5+1 = 1+5+1+1 = 5+1+1+1.

%Y Cf. A114044 (parts 50 and 100 admitted), A001299 (partitions).

%Y Row sums of A351726.

%K nonn,easy

%O 0,6

%A _R. J. Mathar_, Feb 17 2022