login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Square array T(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k * exp(x) / k!).
6

%I #33 May 13 2022 18:20:36

%S 1,1,1,1,0,4,1,0,1,21,1,0,0,3,148,1,0,0,1,12,1305,1,0,0,0,4,70,13806,

%T 1,0,0,0,1,10,465,170401,1,0,0,0,0,5,40,3591,2403640,1,0,0,0,0,1,15,

%U 315,31948,38143377,1,0,0,0,0,0,6,35,2296,319068,672552730

%N Square array T(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k * exp(x) / k!).

%F T(0,k) = 1 and T(n,k) = binomial(n,k) * Sum_{j=0..n-k} binomial(n-k,j) * T(j,k) for n > 0.

%F T(n,k) = n! * Sum_{j=0..floor(n/k)} j^(n-k*j)/(k!^j * (n-k*j)!). - _Seiichi Manyama_, May 13 2022

%e Square array begins:

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 0, 0, 0, 0, 0, ...

%e 4, 1, 0, 0, 0, 0, ...

%e 21, 3, 1, 0, 0, 0, ...

%e 148, 12, 4, 1, 0, 0, ...

%e 1305, 70, 10, 5, 1, 0, ...

%e 13806, 465, 40, 15, 6, 1, ...

%o (PARI) T(n, k) = if(n==0, 1, binomial(n, k)*sum(j=0, n-k, binomial(n-k, j)*T(j, k)));

%o (PARI) T(n, k) = n!*sum(j=0, n\k, j^(n-k*j)/(k!^j*(n-k*j)!)); \\ _Seiichi Manyama_, May 13 2022

%Y Column k=1..5 gives A006153, A346888, A346889, A346890, A346893.

%Y Cf. A143398, A351761.

%K nonn,tabl

%O 0,6

%A _Seiichi Manyama_, Feb 20 2022