login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Integers m such that digsum(m) divides digsum(m^2) where digsum = sum of digits = A007953.
3

%I #35 Feb 19 2022 04:52:31

%S 1,2,3,9,10,11,12,13,18,19,20,21,22,24,27,30,31,33,36,42,45,46,54,55,

%T 63,72,74,81,90,92,99,100,101,102,103,108,110,111,112,113,117,120,121,

%U 122,123,126,128,130,132,135,144,145,153,162,171,180,189,190,191,198

%N Integers m such that digsum(m) divides digsum(m^2) where digsum = sum of digits = A007953.

%C This is a generalization of a problem proposed by French site Diophante in link.

%C The smallest term k such that the corresponding quotient = n is A280012(n).

%C The quotient is 1 iff m is in A058369 \ {0}.

%C If k is in A061909, then digsum(k^2) = digsum(k)^2.

%C If k is a term, 10*k is also a term.

%C There are infinitely many m such that both m and m+1 are in the sequence, for example subsequence A002283 \ {0}.

%C Corresponding quotients are in A351651.

%H Diophante, <a href="http://www.diophante.fr/problemes-par-themes/arithmetique-et-algebre/a1-pot-pourri/4786-a1730-des-chiffres-a-sommer-pour-un-entier">A1730 - Des chiffres à sommer pour un entier</a> (in French).

%F A004159(a(n)) = A007953(a(n)) * A351651(n).

%e digit sum of 42 = 4+2 = 6; then 42^2 = 1764, digit sum of 1764 = 1+7+6+4 = 18; as 6 divides 18, 42 is a term.

%t Select[Range[200], Divisible[Total[IntegerDigits[#^2]], Total[IntegerDigits[#]]] &] (* _Amiram Eldar_, Feb 16 2022 *)

%o (PARI) is(n)=sumdigits(n^2)%sumdigits(n) == 0 \\ _David A. Corneth_, Feb 16 2022

%o (Python)

%o def sd(n): return sum(map(int, str(n)))

%o def ok(n): return sd(n**2)%sd(n) == 0

%o print([m for m in range(1, 200) if ok(m)]) # _Michael S. Branicky_, Feb 16 2022

%Y Cf. A004159, A007953, A351651.

%Y Subsequences: A002283, A011557, A052268, A058369, A061909, A093136, A093138, A254066, A280012.

%K nonn,base

%O 1,2

%A _Bernard Schott_, Feb 16 2022

%E More terms from _David A. Corneth_, Feb 16 2022